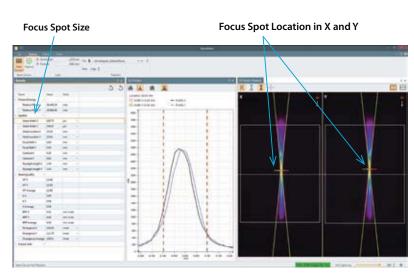


3.8 BeamWatch® Non-contact, Focus Spot Size and Position monitor for high power YAG, Diode and Fiber lasers

- Instantly measure focus spot size
- Dynamically measure focal plane location during start-up
- From 400W and up no upper limit (So far we have measured up to 100kW)
- Non-contact, laser beam is completely pass-through
- Automation Control Interface for System Integration
- GigE camera interface for local network installation
- Patented

BeamWatch utilizes disruptive technology to measure laser beam characteristics of very high power lasers. By not intercepting the beam and yet providing instantaneous measurements, you can now monitor the beam at frequent intervals without having to shut down the process or remove tooling and fixtures to get access. In addition, you can now measure focal spot location at several times per second and know if there is any focal spot shift during those critical start-up moments.


Disruptive Technology

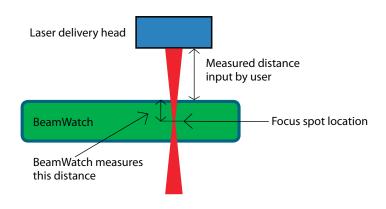
BeamWatch is the first device to measure a laser without coming in contact with its beam which allows it to be the first laser quality measurement product in history to have no upper limit on the lasers which it can measure. BeamWatch provides high-power industrial laser users with data never before seen such as the dynamic measurement of focus shift caused by thermal effects on the laser system. BeamWatch also provides the industrial laser user with measurement of other key laser operating parameters in real-time.

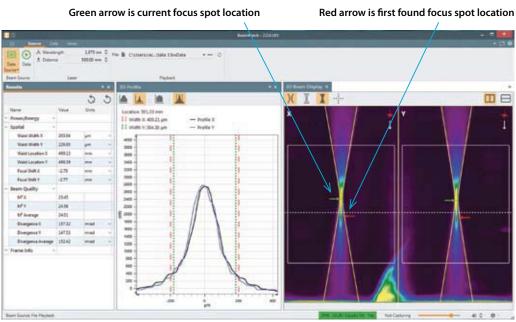
The system measures the signal generated from Rayleigh scattering around the laser's beam waist, where the power density is the highest. Rayleigh scattering is a physical property of light caused by light scattering off of air molecules. Unlike traditional beam measurement systems, the beam passes directly through BeamWatch and is not disrupted, mechanically or optically. In addition, BeamWatch has no moving parts so there is no need for cooling of any components. Specialized system software dynamically measures the signal multiple times per second, allowing the laser user to key in on critical operational laser attributes, such as beam waist size and position with respect to the material being processed.

BeamWatch Technician User Interface

Technician Mode: The technician has access to those tools needed for start-up and advanced beam diagnostics.

Technician mode for dual axis set-up and beam diagnostics




Focus Spot Size (Waist Width)

BeamWatch images the full beam caustic measuring the waist at its smallest point, many times per second.

Focus Spot Location

Now you can precisely know the dynamic behavior of focal spot shift throughout the laser duty cycle. By inputting the known distance from the laser delivery head to a precise datum on BeamWatch the focal spot distance is constantly measured and tracked with millisecond updates.

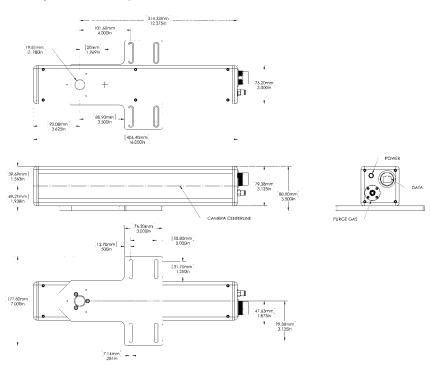
Example using dual axis technician screen

Assured Process Consistency

Measure as often as needed to assure repeatable and consistent process uniformity. Mount BeamWatch into the process or manually insert BeamWatch and make periodic measurements.

You can also automatically compare to initial process validation measurements and utilize automated pass/fail.

Automation Interface

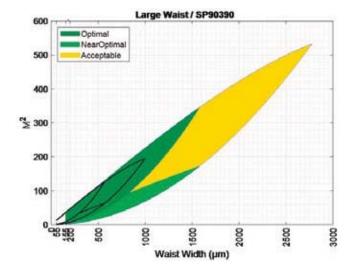

BeamWatch includes the tools to support Automation Clients written in Visual Basic for Applications (VBA), C++ CLI, or any .Net compliant environment, such as Microsoft Excel or National Instruments' LabVIEW.

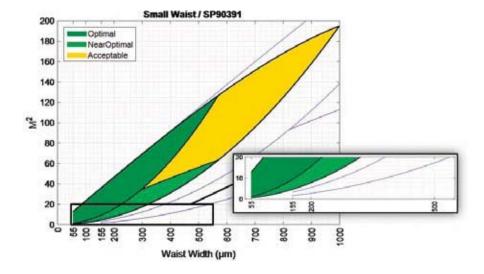
Periodically measure and compare

3.8.1 Product Specifications

Model	BeamWatch
Wavelength	980-1080nm
Minimum Power density	2 Megawatts/cm ²
Minimum Spot Size	
SP90390 Dual axis	155 microns
SP90391 Dual axis	55 microns
Maximum Beam diameter	12.5mm
at entrance/exit	
Communication to PC	GigE Ethernet
Power	110 – 220 Volts AC
Particulate Purge	Clean Dry Gas, approximately 10 LPM
Accuracy	
Waist Width (Spot Size)	±5%
Waist Location	±125 micrometers within the BeamWatch window
Focal Shift	±50 microns
Beam Parameter Product	±3.5% RMS
Divergence	±3.5% RMS
M ²	±3.5% RMS

Specification subject to change


Operating Space Charts


The plots are intended to give a visual indication of the recommended operating space for BeamWatch. If BeamWatch is operated outside of this space, it may be more difficult to see the curvature of the caustic or the beam may be large enough at the edges of the image that

The maximum waist is dependent on the power density and M² of the beam. Specified is a minimum power density of 2 megawatts/cm² and the M² vs waist width is shown in the corn-looking graphs. Following these charts also covers the 12.5mm max beam size as it enters

The 12.5mm maximum beam size at entrance and exit is the physical clear aperture of unit, and is the same for all models.

- Optimal has at least 3 Rayleigh lengths on both sides of the waist, with the waist at the center of the image
- Near Optimal has at least 3 Rayleigh lengths on 1 side of the waist, with the waist at the end of the image
- Acceptable has at least 1.5 Rayleigh lengths on both sides of the waist, with the waist at the center of the image

3.8.1.1 Software Features

Software Features	Dual Axis
Results - Power/Energy	Relative Power
Results - Spatial	Waist Width X & Y
	Waist Location X & Y
	Focal Shift X & Y
	Centroid X & Y
	Width at Cursor X & Y
	Ellipticity at Cursor
	Rayleigh Length X & Y
	Waist to Cursor X & Y
Results - Beam Quality	M ² X & Y
,	M ² Average
	KX&Y
	K Average
	BPP X & Y
	BPP Average
	Divergence X & Y
	Divergence Average
Results	All results can be shown/hidden.
Frame Info	Frame ID
	Timestamp
1D Profile	Logarithmic or Linear
	Control to enable/disable the beam width markers
	Profiles are drawn at the cursor location. Cursor is controlled in the 2D display
	Display shows current cursor location and width at cursor results
	The X and Y profiles are overlapped in a single display
2D Beam Display	Overlays that can be enabled/disabled
	Fitted caustic and drawn beam area
	Raw data points
	Beam Image
	Alignment Crosshair – Marks the center of the display for each axis
	Beam can be displayed vertically or horizontally on the screen
	Labels indicate X and Y axis and the direction of beam propagation
	Cursor can be moved to any point along the beam
	Focal point indicators – one shows current waist position, another shows first found waist position
Statistics	Mean, Std Dev, Max, Min, and Sample Size
System Requirements	PC computer running Windows 7 (64) and Windows 10 Laptop or Desktop:
	GHz Pentium style processor, dual core recommended
	Minimum 2GB ŘAM
	Accelerated Graphics Processor
	Hard drive space suitable to hold the amount of video data you expect to store (50-100 GB recommended)

3.8.1.2 Ordering

Item	Description	P/N
BW-NIR-2-155	Dual axis - BeamWatch non-contact, focus spot size and position monitor for focus spots from 155µm and larger (see operating space charts)	SP90390
BW-NIR-2-55	Dual axis - BeamWatch non-contact, focus spot size and position monitor for focus spots from 55µm and larger (see operating space charts)	SP90391
Suggested Add-Ons		
Rotation Mount	Add-on 180° manual rotation mount to bottom of BeamWatch	SP90346
Locking Ethernet Cable	Replace standard Ethernet cable with one that locks into place, IP67 rated	SP90394
5000W-BB-50	5kW water cooled power sensor	7Z02754
10K-W-BB-43	10kW water cooled power sensor	7Z02756
30K-W-BB-74	30kW water cooled power sensor	7Z02757
120K-W	100kW water circulated power sensor for laser with an approximately Gaussian beam and fiber output	7702691
Juno	Compact module to operate one Ophir sensor from your PC USB port	7Z01250
Vega	Hand held color universal power meter	7Z01560

