# ORIA VIS

# Fully-Automated Visible Wavelength Extension for Femtosecond IR OPOs



## **Key Features**

- Tunable across 495 775 nm when pumped across 990 1550 nm. Without any change of optics.
- Highest power with >400 mWatts at the peak of the tuning range.
- Four outputs are available: 1) 990 1550nm at full power, 2) 495 775 nm, 3) 1680 4000 nm, 4) 990 1550 nm undepleted.
- Excellent beam pointing stability with TEMoo spatial quality.
- Hands-free operation with a dedicated control software. Control drivers available.

# **Applications**

- Time-resolved spectroscopy
- Single-molecule spectroscopy
- Pump-probe experiments
- CARS and Raman microscopy
- Nanophotonics
- Micromachining
- Quantum optics

# RADIANTIS

### Broad tuning in the visible spectrum is now possible with the Oria VIS, a wavelength extension to most commercial femtosecond IR OPOs. This sophisticated second harmonic generation (SHG) module, converts the IR spectrum of a femtosecond IR OPO (990 - 1550 nm) into the visible range (495 - 775 nm) in a simple fashion.

The Oria VIS features the highest conversion efficiency in its class, providing more than 40% conversion efficiency and 400 mW at the peak of the tuning range. As a result, output powers of more than 400 mW can be achieved when pumped by 1 Watt femtosecond pulses in the IR. High peak-to-peak power stability and excellent beam pointing across the complete spectral range make the Oria VIS a convenient tool for a range of scientific applications, including time-resolved spectroscopy and quantum optics.

The Oria VIS includes four output ports which deliver 1) the OPO signal (990 - 1550 nm), 2) the SHG of the OPO signal (495 - 775 nm), 3) the OPO idler (1680 - 4000 nm) and 4) the depleted OPO signal (990 - 1550 nm). It incorporates a pump bypass which enables the selection of 100% of the OPO signal and idler (with no SHG of the signal) or 100% of the SHG of the signal (simultaneously with the undepleted OPO signal and 100% of the idler).

Designed for pick-and-place installation, it ensures virtually maintenance-free operation and highest usability since it does not require manual alignment, being exclusively controlled by a PC. Control drivers are also available.

#### Specifications<sup>(1)</sup>

| Output Characteristics            | Oria VIS                                          |
|-----------------------------------|---------------------------------------------------|
| Tuning range                      | 495 - 775 nm                                      |
| Output power <sup>[2]</sup>       | > 400 mW                                          |
| Pulse width <sup>(3)</sup>        | < 180 fs                                          |
| Beam diameter at 525 nm           | 2.5 mm                                            |
| Beam divergence                   | < 1 mrad                                          |
| Beam displacement with wavelength | < 2.5 μm                                          |
| Spatial mode                      | TEM <sub>oo</sub>                                 |
| Polarization                      | Vertical                                          |
| Repetition rate                   | 80 MHz                                            |
| Size (W x L x H)                  | 568.0 x 366.5 x 189.2 mm (22.4 x 14.4 x 7.5 inch) |

#### ORIA IR and ORIA VIS



#### Notes

<sup>1</sup> Specifications are subject to change without notice

<sup>2</sup> At the peak of the tuning range, when pumped by Oria IR OPO
<sup>3</sup> When pumped with Oria IR OPO

#### **ORIA VIS Typical Tuning Curve**



**ORIA VIS Diamond Chart** 



**ORIA VIS Dimensions** 





© Copyright Radiant Light 2017, Radiantis and Oria are both Registered Marks of Radiant Light, S.L. Address: Carrer Copèrnic, 2-4, Polígono Industrial Camí Ral, 08850 Gavà, Barcelona (Spain) Phone: +34 936 389 763 | E-mail: info@radiantis.com | Web: www.radiantis.com