

"ONE SINGLE VERSATILE WAVEFRONT SENSOR...

PHASICS® wavefront sensors stand out for both their unrivalled **high resolution** and their **ease of use.** As they cover beam testing, adaptive optics and plasma characterization, PHASICS instruments offer full **versatility** to engineers and researchers in high power laser facilities (Petawatt, Terawatt...).

EXCLUSIVE TECHNOLOGY: 4-WAVE LATERAL SHEARING INTERFEROMETRY*

PHASICS® technology was introduced to overcome the Shack-Hartmann sensor limitations, especially resolution. This ultra-high resolution enables accurate wavefront measurement for robust calculations of beam parameters.

HIGH RESOLUTION

- Up to 120 000 measurement points
- High repeatability
- Robust calculations

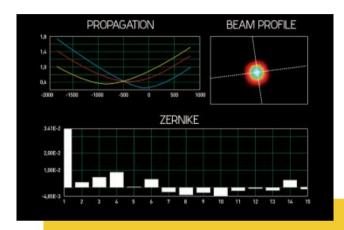
HIGH DYNAMIC RANGE

Measurement of strong aberrations

DIRECT MEASUREMENT OF DIVERGING BEAM

- Easy set-up & alignment
- High NA with no relay lens
- The after last parabola wavefront measurement

SELF REFERENCED


- Compact
- Insensitive to vibration

ACHROMATIC

- Compatible with broadband sources: Femtosecond laser, white light or LED
- Cost-effective multi-wavelenght solution

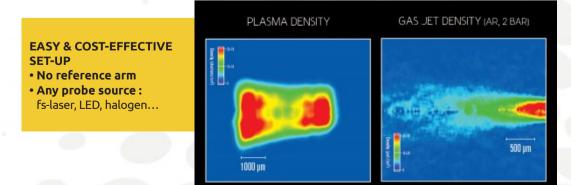
...TO MEET ALL YOUR CHALLENGES

- ACCURATE BEAM CHARACTERIZATION AT ANY POINT OF THE LASER CHAIN

- High resolution of both phase
 intensity for robust calculations
 of all laser beam parameters
- Set-up with no relay lens at any point of the laser chain
- Easy parabola and optics alignment

Aberrations: Zernike, Legendre

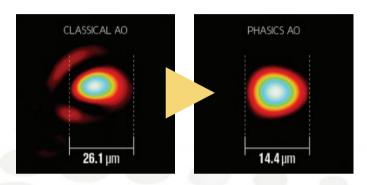
Beam propagation: M² (ISO 11146), waist, Rayleigh length, divergence


PSF: Strehl ratio, encircled energy

Advanced measurements: Annular or rectangular pupils, multiple pupils, piston, tilt

Beam profile: Energy distribution, intensity centroid

| - GAS & PLASMA DENSITY HIGH SENSITIVITY & REPEATABLE MEASUREMENT


- High sensitivity (8x lower noise than Mach-Zender interferometer)
- Accurate at low gas pressure
- Repeatable shot-to-shot measurements to compare homogeneity (nozzle selection, laser pulse illumination...)

IN LASER EXPERIMENTS"

III - ADVANCED ADAPTIVE OPTICS WITH ANY DEFORMABLE MIRROR

- Telescope aberrations removal
- 3D dynamic pointing

↑ Correction after the last parabola without any additional device to achieve the best possible focal spot

V - OPTICS ALIGNMENT & TESTING

EASY DOUBLE PASS MEASUREMENT WITH R-CUBE INTEGRATED ILLUMINATION ADD-ON

- Large mirror measurement in the laser chain
- Telescope aberrations removal
- Lens test and alignment in all the laser chain
- Diagnostic beamline calibration

HIGH RESOLUTIONWAVEFRONT SENSORS

SID4 RANGE FROM UV TO IR

	Spectral range	Aperture dimension (mm²)	Spatial resolution	Phase sampling (pixels)	Phase accuracy (Absolute)	Phase resolution	Vacuum compatibility
UV	250-400 nm	7.4 x 7.4	29.6 µm	250 x 250	10 nm RMS	2 nm RMS	-
SID4 ν	400-1100 nm	4.73 x 3.55	29.6 µm	160 x 120	15 nm RMS	2 nm RMS	> 10 ⁻⁶ mbar
SID4	400-1100 nm	4.73 x 3.55	29.6 µm	160 x 120	10 nm RMS	2 nm RMS	-
SID4-HR	400-1100 nm	11.84 x 8.88	29.6 µm	400 x 300	15 nm RMS	2 nm RMS	-
NIR	1.5-1.6 µm	4.73 x 3.55	29.6 µm	160 x 120	15 nm RMS	11 nm RMS	-
SWIR	0.9-1.7 μm	9.6 x 7.68	120 µm	80 x 64	15 nm RMS	2 nm RMS	-
SWIR-HR	0.9-1.7 μm	9.6 x 7.68	60 µm	160 x 128	15 nm RMS	2 nm RMS	-
eSWIR	1.0-2.35 µm	9.6 x 7.68	120 µm	80 x 64	<40 nm RMS*	<6 nm RMS*	-
DWIR	3-5 μm & 8-14 μm	10.08 x 8.16	68 µm	160 x 120	75 nm RMS	25 nm RMS	-
LWIR	8-14 µm	16 x 12	100 µm	160 x 120	75 nm RMS	25 nm RMS	-

^{*} For coherent sources

WITH ANY DEFORMABLE MIRROR

	ND4	High Power Laser		Imaging correction	Imaging correction & beam shaping
Technology	Piezo electric (small diameter)	Piezo electric (large diameter)	Mechanical of the latest generation (stepper motor)	Membrane	SLM
Number of actuators	up to 36	up to 150	up to 60	up to 80	800 x 800 ог 1080 x 1920
Diameter	15-25 mm	300-400 mm	22-500 mm	10-30 mm	7-16 mm
Damage threshold	Very	/ high (on-demand c	High	Medium	
Loop speed	5-10 Hz	5-10 Hz	1 Hz	5-10 Hz	5-10 Hz

DEDICATED SOFTWARE PACKAGES

- SID4 **Density module** for plasma diagnosis
- OASys module for adaptive optics
- SID4 for beam analysis

PHASICS

The phase control company

PHASICS S.A.

Bâtiment Explorer - Espace Technologique Route de l'Orme des Merisiers, 91190 Saint-Aubin, FRANCE Tel : +33(0)1 80 75 06 33 contact@phasics.fr

PHASICS CORP.

600 California Street - 11th Floor San Francisco CA 94108, USA Tel:+1 415 610 9741 contact@phasics.com

www.phasics.com